
2 

vapor through the gas at the test temperature and the pressure P , m /sec; ~, viscosity of 
vapor--gas mixture averaged over the partial pressures [3], N'secTm2; M, mass density of the 

vapor flow, kg/m2.sec; R = Ro/~, specific gas constant, J/kg.K; ~, molecular weight of liquid 
o ~ , being evaporated, kg/kmole; T, temperature, K, I coordinate of meniscus of liquid during 

evaporation, m; p, density of liquid, kg/m 3", t, time, sec; Ro, universal gas constant. 
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EXPERIMENTAL INVESTIGATION OF THE WORKING PROCESS IN A VORTEX TUBE 

V. A. Vysochin and V. A. Safonov UDC 532.527 

The authors present the results of an experimental investigation of the tempera- 
ture separation process in the chamber of an energy separation vortex tube. 

The use of the vortex effect in industry requires improvement both in vortex tubes 
themselves and in the method of their design. This can be achieved primarily by the accumu- 
lation of information on the nature of the processes occurring in a vortex tube. Unfortunately, 
the experimental study of the high-speed three-dimensional flow in small diameter vortex tubes 

is very complex, and the published data are few and have not been classified. In this paper, 
besides the experimental investigation, the authors have tried to analyze flow within the 

energy separation chamber of a vortex tube. 

The tests were performed in a counterflow adiabatic vortex tube with a cylindrical energy 
separation chamber of diameter 0.i m. A four-channel nozzle insert was made up in the form of 
an Archimedes spiral with a total geometrical area of channels of 0.I F at the throat section. 

The relative diameter of the diaphragm aperture was d = 0.5. The relative roughness of the 
inner surface of the energy separation Chamber was A = 1,10 -3 . The chamber length was 12.5D. 

The flow parameters inside the e_nergy chamber were investigated at four sections. Sec- 
tion I was at a distance of O. 01 m (L = 0.i) from the diaphragm plane, and sections II, III, 
and IV were at distances of L = 1.5, 5.0 and 8.5, respectively. 

To investigate the distribution of the parameters at sections II-IV we used a variable- 
attitude combination F-shaped head, made of a tube of outer diameter 0.001 m according to the 
recommendations of [i]. Before the investigations were conducted the head was calibrated in 
a wind tunnel in the test range of reduced flow velocities. 

The radial distribution of stagnation temperature and pressure at the nozzle section 
(L = 0.i) was investigated by means of two heads which were inserted into the vortex tube 
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Fig. i. Radial graphs of the circumferential (a) and axial (b) 
velocities in the energy chamber of a vortex tube: I) L = 0.I; 
II) 1.5; III) 5.0; IV) 8.5. V and U are in m/sec. 

through apertures in the diaphragm. The static pressures at these sections were measured by 
means of 15 taps located along the radius of the diaphragm. Experiments showed that this 
method of obtaining information at section I made it possible to minimize the error in 
measuring static pressures and eliminated distortion of the flow picture due to the head 

support. To measure the flow temperature at section I we used a head made of type KTMS 
(Chromel-Copel) thermocouple cable with an envelope diameter of 0.0015 m. The thermocouple 
junction had a diameter of 0.0005 m. The sensor part of the stagnation pressure head, made 
of a tube of outer diameter 0.001 m, had a chamber tQ ensure that it was insensitive to flow 
angle in the range • ~ . As secondary instruments to record the temperatures and pressures, 
we used type GRM-2 group recording manometers and type KSP-4 electronic potentiometers. 

The investigations were conducted in air with the inlet conditions: T* = 373 • 2~ p* ~ 
6.105 N/m 2 (7* 46.0). The values of D were determined by calculation, for which purpose we 
measured the flow rates of air arriving at the nozzle insert and of the heated flow. 

The circumferential and axial components of the flow velocity were calculated at various 
sections from the measured flow angles, reduced velocities, and stagnation temperatures. To 
determine the stagnation temperatures we calculated the recovery factor of a specific thermo- 
couple as recommended in [i]. 

Reduction of the experimental data showed that, as the swirling flow moved along the 
energy separation chamber of the vortex tube, its circumferential velocity component reduced 
(Fig. la), and this was seen more intensely in the peripheral part. Here the axial velocity 
gradients reach values of 6-7% over the diameter. Comparison of the circumferential velocity 
graphs over a wide range of H shows that in the hot part there is apparently no appreciable 
redistribution of the radial graph of the circumferential velocities along the length. Basi- 
cally the flow retains a single complex type of vortex from section I to s_ection IV, described 
in ge_neral by the equation VR n = const, with a maximum velocity reaching R = 0.75 at section I 
and R = 0.60 at section IV. Analysis of the radial graphs of axial velocities in Fig. ib shows 
that the flow in the peripheral part of the energy separation chamber is accompanied by a de- 
crease of the flow rate of the component of absolute velocity from the nozzle section to the 
valve section, while in the near-axial part it increases from the valve section to the nozzle. 

The radius of the conventional interface between the peripheral and axial regions in_our 
experiment is close to the radius of the diaphragm aperture and depends slightly on L and ~. 

As a whole, the velocity distribution obtained confirms the known picture of two-dimen- 

sional flow [2]. The radial velocity component can be obtained by calculation. 

Having available data on the distribution of pressure, temperature, and flow angle along 
the radius, we can calculate the axial mass flux along the energy chamber of the vortex tube. 
The calculations were carried out by numerical integration of the flow rate over the cross 
section from the radius of the conventional interface of the two flows (U = 0) up to the 
generators of the energy chamber for the peripheral flow. For the axial flux the integration 
was carried out in the range (RI = 0)~ R ~ (R2 = RU=0). Figure 2a shows the results of cal- 
culations of the ratio of the mass of flux for the peripheral region to the mass of gas arriving 
through the nozzle insert. In the region of ~ investigated the experimental curves can be 

approximated by the equation 

= exp (-- O. 124 ~L). (1)  

It can be seen from Fig. 2a that the displacement of the gas stream from the nozzle section to 
the throttle valve is accompanied by a reduction in mass in the peripheral region, and with 
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the greatest gradients in the initial sections. For a total length of energy chamber of ~ = 
12.5, apart from the dependence on D, 33% of the reduction of mass flux in the peripheral 
region occurs in the section of ~3.0 diameters, and 50% of the reduction occurs within a sec- 

tion of extent 4.6 diameters. The decrease of mass in the peripheral section evidently re- 
sults from leakage into the axial region, due to the presence of a radial velocity component. 

The radial velocity, referenced to the parameters of the gas stream at the conventional 
interface, can be calculated from the mass equation. It turns out that the maximum values of 

radial velocities also correspond to the initial sections, but they are very small in absolute 

value. For instance, for the initial sections W did not exceed a value of 0.006 Vma x for 
these sections. Up to the fourth section W under the same conditions (~ = 0.7) decreased 

monotonically to 0.004 Vma x. The smallness of the radial velocities can be explained by the 
considerable values of surface sink. Here the radial velocities were calculated as mass flow 
averages. 

From the available experimental data one can analyze the variation of momentum flux in 

the peripheral region of the energy chamber. The results of the calculations are shown in 
Fig. 2b. The momentum flux is referenced to the flow parameters at the exit of the nozzle 
insert. It follows from the graph that the variation in reduced momentum along the energy 

chamber is alsc exponential and can be expressed in the form 

7 = e x p ( - - O . 1 8 L ) "  (2 )  

The presence of an axial momentum flux gradient, in conjunction with a radial efflux of 
working substance, allows an analogy to be drawn between the process of expanding a gas in 

the energy separation chamber of a vortex tube and the peculiar turbine friction in which a 
reduction of the gas stagnation temperature results from its doing work [3]. With this 

analogy one can design vortex tubes without resorting to the complex model of the energy 
exchange process suggested in [2]. 

We shall now analyze graphs of the radial distribution of the flow parameters at the noz- 

zle section at relative flow rates of cold flow of ~ = 0.5 (Fig. 3a). At the exit from the 
channels of the nozzle insert the flow has a subsonic velocity averaged around the circum- 

ference. As the radius decreases from R = 1.00 to R = 0.80, the flow accelerates up to sonic 
and supersonic velocities according to a law that is described very closely by the free vortex 

equation VR = const. At this same section the stagnation pressure is kept constant along the 

radius. Starting from R ~ 0.80 there is a transition section where the radial variation of 
velocity is described by the equation VR n = const. At this section the exponent of R changes 

from n = +i to n = --i, i.e., the flow acceleration continues with subsequent deceleration and 
transition through_sonic velocity. The reduction of stagnation temperature begins with R 
0.80 (for ~ = 0.3 R = 0.85; ~ = 0.7 R = 0.63). 

As is known from hydromechanics, a dependence of the form VR = const is called a poten- 
tial vortex, the law of constant circulation, and constancy of angular momentum. In accordance 
with this law the stagnation pressure and the stagnation temperature stay constant in the 
region where this type of vortex exists. In other words, the flow acceleration in this sec- 
tion occurs in the same way as for the bladeless directional apparatus of a centripetal turbine 
[4]. 

Analysis of the ratios of the measured flow parameters in the range R = 0.80-0.50 shows 
that in this section a decrease of the stagnation pressure is equivalent to a decrease of 
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stagnation temperature and to the dissipative losses. The decrease of stagnation pressure 

in an ideal process equivalent to the stagnation temperature decrease can be found from the 
isentropic equation 

T*'T* k--1/h 21 ~ = (P~IP~) (3) 

The difference p~ -- P~meas is the dissipative losses. Figure 3b shows the results of the cal- 
culations using Eq. (3) in the range of p investigated. It can be seen from Fig. 3h that the 
dissipative losses of stagnation pressure linked to the vortex character of the flow depend 
slightly on p, and (for a given degree of expansion) can be taken to be roughly equal to 
0.34p~. The relative loss, expressed in terms of the efficiency of the expansion process, can 
be calculated from the equation 

T? --  T ~ =  n*T~ [ 1 - - ( p ~ / p ~  )~-~/~1. (4) 

The results of the efficiency calculations from the stagnation parameters for four sections of 
the energy chamber of the vortex tube for different values of ~ are shown in Table l, from 
which it can be seen that the relative losses increase monotonically with increase of the rela- 
tive mass flow rate of cooled gas. The losses also increase with increasing distance from the 
nozzle insert section, going towards the throttle valve. At the same time, the fact that the 
values of ~* at different sections along the energy chamber are commensurate with the tempera- 
ture coefficient of the vortex tube efficiency ~ is evidence that the processes occurring are 
common. 

Analysis of the T = f(R) curve shows that the minimum of the static temperature in the 
range of the experiment performed at the nozzle insert section occurs at R = 0.50-0.80, de- 

pends on p, and is governed, apparently, by the set of velocities and ambient stagnation tem- 
peratures at a given radius. The radial gradients of the measured static pressures are found 

to be in accordance with the equilibrium equation for swirling flow. 

From the available experimental data one can calculate the drag coefficient for flow of 
the peripheral stream from the nozzle insert section to the throttle valve and the loss coef- 
ficients for flow of gas in the radial direction. This kind of differentiated approach to 
determining the hydraulic loss coefficients is desirable to resolve the matter of the limit 
characteristics of the vortex tube. 

The hydraulic drag coefficients of the peripheral flow were calculated from the formula 

= __2Ap* cos (CU) , ( 5 )  

pC 2 Z 

and the Re number: 

Re = CDt~. (6) 

The values of AP* in Eq. (5) were determined in the range between the measuring sections at 
the reduced radius R = 0.90, corresponding to the "core" of the stagnation pressure curve. 
The remaining values appearing in Eqs. (5) and (6) correspond to average parameters of the 
gas stream at the same R in the given range L. As the characteristic dimension in Eq. (6), 
we took the vortex tube energy chamber diameter. The results of the calculations according 
to Eqs. (5) and (6) are given in Table 2 from which it can be seen that the flow in the peri- 
pheral part of the energy chamber corresponds to the similarity solution for the Reynolds 
number region, and a change of Reynolds number from Re = 1.86,10 e to Re = 4.87.106 has 
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TABLE i. Distribution of the Efficiency of the Ex- 
pansion Process ~* at Various Sections of the Vortex 
Tube as a Function of 

0,3 
0,5 
0,7 

0 , i  

69,6 
60,4 
45,7 

1,5 

66,2 
54,7 
39,5 

5,0 

57,5 
45,5 
31,4 

8,5 

52,0 
39,5 
27,5 

54,6 
47,3 
32,7 

TABLE 2. Calculated Hydraulic Loss Coefficient along the Vortex 
Tube Energy Separation Chamber 

N section I - - I I  
0,097 

Re.10 -~ 4,87 

o,3 I 

I I - - I I I  I I I - - IV  I - - I I  
0,096 0,096 0,089 
3,22 2, t7 4,86 

0,5 I 0,7 

I I - - I I I I I I - - IV I--II 
0,094 0,094 0,095 
3,20 2,00 4,63 

I I - - I I I  
0,091 
2,84 

I I - - IV 
O, 096 
1,86 

practically no influence on the hydraulic drag coefficient ~. The absolute value of the hy- 
draulic drag coefficient is interesting. It is almost five times larger than the drag coef- 
ficient in flow without twist in steel pipes of analogous roughness [5]. The probable reason 
for this, in addition to the specific features of swirling flow [6], is the efflux of working 
substance from the peripheral region towards the axis. Tests with porous tubes [7] have shown 
that this factor has a very important influence on the hydraulic loss. 

According to [8], for the strongly swirling flows which are observed in cyclone-vortex 
chambers and vortex tubes, the tangential friction stresses for the main part of the flow can 
be represented in the form 

= Kp (dr~dR) 2, ( 7 ) 

where K is a parameter describing the turbulent structure of the flow; and F = VR is the 
velocity circulation. 

Analysis of the curves of T* and p* = f(R) has shown that the hydraulic losses of stag- 
nation pressure in the radial direction are proportional to the friction stresses and can be 
calculated from the formula 

AR 
Ap*  - - -  K p a v ( A r / A R ) t  <8)  

Ray 

It follows from Eqs. (7) and (8) that for circulation-free flow (F = VR = const) the 
friction stresses and the stagnation pressure losses in the radial direction are zero. This 
finds an experimental confirmation at the nozzle insert section at the segment 0.80 ~ R ~I.OQ 
(Fig. Be). 

The reduction of the radial curves of p* and T* = f(R) has shown that there is quite a 
close connection between the dimensionless quantities K and Rv/Rvmax. An empirical relation 
(with correlation coefficient r = 0.91)can be represented in the form of the expression 

K = 0.5 (RJRo max) 3 ,2 (9 )  

f o r  t h e  r a n g e  0 . 1 ~  L ~ 1 . 5  a n d  ~ = 0 . 1 2 - 0 . 5 0 .  

From the experimental data obtained and the calculated hydraulic loss coefficients we 
can improve the flow structure in large-scale vortex tubes and plan ways to perfect them. 

NOTATION 

D, F, diameter and area of the energy separation chamber at the nozzle insert section; 
d, relative diameter of the diaphragm aperture; L, reduced length of the energy separation 
chamber; m, pass flow rate; p, p*, static pressure, stagnation pressure: T', T, T*, measured, 
static and s@agnation temperature; T, T*, static and stagnation temperature referenced to the 
stagnation temperature at the nozzle exit; R, R, ambient and reduced radii; r, thermocouple 
recovery factor, or correlation coefficient; Re, Reynolds number; C, V, U, W, absolute~ cir- 
cumferential, axial, and radial velocity components; ~, hydraulic drag coefficient; n = AT*/ 
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ATe, coefficient of thermal efficiency; %, velocity coefficient; ~ = mx/m0, relative mass flow 
rate of cold stream; p, density. Subscripts: i, 2, O, x, for the parameters of the beginning 
and end of the expansion process for cold flow arriving at the nozzle insert. 
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NONEQUILIBRIUM NEGATIVE PRESSURES 

F. G. Veliev UDC 532.552 

The possibility of obtaining brief negative pressures in real pipeline systems 
under definite nonequilibrium processes is experimentally considered. 

A negative pressure is one of the metastable states at which the effect of tension and 
the subsequent discontinuity of the fluid appears. There are numerous results of experimental 
researches of static and dynamic nature in which a negative pressure appears to some degree 
[i]. Starting with the first tests of F. M. Donny, who obtained a negative pressure of just 
-~.12 bar and ending with the researches of L. J. Briggs who reached the value --425 bar, the 
main condition for the appearance of the effect in the tests performed was adequate "purity" 
of the fluid and the vessel, i.e., absence of any gas bubbles, impurities, foreign films, etc. 

We investigated the condition for the origination of negative pressures in real pipeline 
systems for definite nonequilibrium transients. The diagram of the experimental set-up is 
represented in Fig. i, where 1 is the high-pressure trap (3 m3); 2 is the pipeline; 3 is the 
shutoff valve; 4 is a chromel-kopel thermocouple; 5 is a differential manometer; 6 is a valve; 
7 is a tank; 8 are regulating gates; 9 are pumps; D are pressure strain gauges; DV is a Dewar 
vessel; P is the potentiometer P-363/I; CP is the control panel; Osc is the oscilloscope K12- 
22; A is an amplifier, and PR is a pressure regulation system. The working length of the 
horizontally mounted steel pipeline was 30 m. The cutoff valve assured practically instan- 
taneous (10 -2 sec) turn-on (or off) of the flow. The characteristic of the nonstationary 
process originating in the flow was recorded by the oscilloscope and potentiometer by means 
of appropriate pressure and temperature sensors. Semiconductor strain gauges developed in the 
Institute of Physics of the Academy of Sciences of the Azerbijan SSR were used as pressure 
sensors [2]. 

Water and viscoelastic oil from the Balakhyn--Sabunchi--Romaninskii deposits were used in 
the tests. Whenthe cutoff valve was opened the fluid under investigation flowed into the 
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